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The "order parameter" of the two-dimensional F-model, namely the spon- 
taneous staggered polarization P0, is derived exactly. At the critical tem- 
perature Pc has an essential singularity, both P0 and all its derivatives with 
respect to temperature vanishing. 
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1. I N T R O D U C T I O N  

The F-model of  an antiferroelectric on the square lattice was proposed by 
Rys (1) and solved by Lieb. (2) I t  has a phase transition at a critical temperature 
To. Below Tc the system assumes one of two antiferroelectrically ordered 
thermodynamic states. These states are degenerate, having the same free 
energy. 

Nagle (3) has pointed out that it is natural to add a staggered electric 
field E to the F-model. This breaks the degeneracy of the ordered states and 
is analogous to applying a magnetic field to the Ising model. Unfortunately, 
this more general and very interesting problem (4) has not yet been solved. 

However, we have succeeded in obtaining P0, the zero-field spontaneous 
staggered polarization, and give the results (which have already been re- 
ported ('5)) and their derivation here. This P0 is the "order parameter"  of  the 
model (i.e., the analog of the spontaneous magnetization of the Ising model). 
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It varies from unity at zero temperature (complete order) to zero at To 
(disappearance of crystalline order). 

We now define the model, which is actually a generalization of the 
F-model, containing it as a special case. 

Consider a rectangular lattice of M rows and N columns, wound on a 
torus so that cyclic boundary conditions apply. Throughout this paper we 
take M and N to be even. Thus we can divide the lattice into A and B sub- 
lattices such that each A site has only B sites as neighbors and vice versa. 

Place arrows on the bonds of the lattice so that at every site, or vertex, 
there are two arrows pointing in and two out (the "ice condition"(6~). Then 
there are six possible configurations of arrows at a vertex, as shown in Fig. 1. 
We associate energies E 1 ..... E G with these configurations and suppose that 

ez = E2, e3 = e4, e5 = % (1) 

e 5 < min (q ,  ~3) (2) 

[We remark toward the end of this section that the restrictions (1) are not 
essential. However, they help us fix our ideas.] 

We also associate energies E (E') with vertical (horizontal) arrows that 
point into A sites, and correspondingly energies - -E  (--E')  with arrows that 
point out. The partition function is then 

Z : 2 exp fl 1Nje~ + E(Nv -- Nv') + E'(N~ -- NH') (3) 

where/3 = 1/kT, the first summation is over all allowed configurations of 
arrows on the lattice, Nv and Nn (Nv' and Nil') are the number of vertical 
and horizontal arrows, respectively, that point into (out of) A sites, and N~ 
is the number of vertices of type j. 

From the ice condition the number of arrows into A sites must equal 
the number out, so 

Nv + N~ = Nv' + Nn' (4) 

From this and (3) it follows that Z depends on E and E' only via their 
difference E -- E'. Hence Z is a function of M, N, T, and E -- E'. 

+ 
1 

Fig. 1. 

+ + + + +  
2 3 4 5 6 

The six possible configurations of arrows at a vertex. 



Spontaneous Staggered Polarization of the F-Model 147 

The free energy per vertex f and the vertical and horizontal staggered 
polarizations P and P '  are defined by 

- - f i f  ~- lim (MN) -~ In Z ( M ,  N,  T, E - -  E ' )  (5) 
M , N - ~  

P -~ - - ( ~ f / O E ) T ,  P '  = - - (~ f / i~E ' ) r  (6) 

P '  = - -P  (7) 

Clearly, 

We define a, b, c, A,  A, and t by 

a ~- e - ~ %  b ~- e - ~ %  c = e - " 0  (8)  

d : - -cosh A = (a 2 + b 2 - -  c~)/(2ab) (9) 

t---~ e -~  

When E = E'  = 0 the system undergoes a phase transition at a tem- 
perature T~ given by (2,7> 

c = a + b (10) 

Below T~ it follows from (2) that 

c ~ a + b ,  A < - - I  (11) 

so A can be chosen real and positive, and 0 < t < 1. In this regime the 
system is antiferroelectrically ordered and we expect there to be (see Section 2) 
a nonzero spontaneous staggered polarization Po, defined by 

P o =  lira P (12) 
E_E ' -~O + 

We show in this paper that 

P0 = 1-I (tanh mh) 2 = I-[ (1 -- t2"02/(1 + t2m) "2 (13) 

This result can be expressed in terms of elliptic moduli and integrals. 
Let k be an elliptic modulus such that 

)t ~ ~ K ' / K  (14) 

where K and K' are the complete elliptic integrals of the first kind, of moduli 
k and k ' =  (1 - -k2)  1/2, respectively. Then from Eq. (8.197.6) of Ref. 8 

Po - -  2(k')~/~K/~. (15) 
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Further, rearranging Eq. (8.181.1) of Ref. 8 and using (8.192.1), we can 
show that 

p~/2 = 1 + 2 ~ (--1) ~ t 2"~2 
m = l  

= 1 - -  2t 2 + 2t s --  2t as q- -" (16) 

This is an extremely rapidly convergent series at low temperatures, when 
t is small. In an earlier paper [Eq. (7.6) of Ref. 9] we used Nagle's low- 
temperature series (a) to expand P0 in powers of t up to and including terms 
of order t s. We noted that the result was extremely simple. Equation (16) 
explains why ! 

One can apply the Poisson summation formula (t~ to (16) and obtain 

P~/~ (2rr/a)t/z ~ exp[-- (m -5 ~)2 rr2/2A] (17) 0 
m = 0  

This series is rapidly convergent when A is small, i.e., when T is close to T~. 
Near  T~ we see, using (8) and (9), that 

Po ~ (27r/)0 exp(--rr2/420 ~ (T~ --  T)- t /~ exp[- -g / (T~  - -  T)'/2] (18) 

where g is a positive constant. Thus P0 has an essential singularity at T~, 
both it and all derivatives vanishing. 

1.I. O t h e r  Thermodynamic  Quantit ies 

Such essential singularities seem to be typical of the F-model. Consider 
the ordered state and let A0, A1, A 2 be the three largest (in magnitude) 
eigenvalues of the transfer matrix, arranged in decreasing order. Then the 
quantities that have previously been calculated are: the free energy, (2.n) 
given by A 0 ; the interfacial tension ~ [Eqs. (5.11), (5.13) of Ref. 12], given by 
Ao/A  ~ ; and the ratio Ao/A  2 [Eq. (8) of Ref. 13]--this determines the rate of  
decay of correlations to their asymptotic values. 

We define a parameter c~ by 

a/b = sinh[�89 + ~)]/sinh[�89 - -  a)] (19) 

For the proper F-model, a = b, so c~ - -  0. For our more general case a =~ b, 
and [ ~1 < A .  

Both Ref. 12 and 13 concern the eight-vertex model. However, when 
k --* 0 this reduces to the F-model and 2, and ce in those papers then have the 
same meaning as here. 
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We definefsing, the "singular part" of the free energy, to be the difference 
between the true free energy for T < T~ and the analytic continuation into 
this regime of f for T > T,. It can be evaluated by methods similar to those 
used to obtain Eq. (A. 13) of Ref. 11. 

Using Poisson transforms, a~ or the properties of elliptic functions, (s) 
we find that 

(--1)"{exp[--(m -5 �89 cos[(m @ 1)Trc~/A] 
~ ~ n g  i 

m=0Z~ (m + �89 sinh[(m -/�89 
(20) 

fia ~ ~ {(m + �89 sinh[(m -5 �89 z (21) 

AA02 cos[(m + �89 (22) 
In -- ~ (m + �89 sinh[(m + �89 

~'rt =0 

These series are rapidly convergent for T near Tc (A small). Taking their 
leading terms, we see that near T~ 

--~fsing ~ 4i cos(�89 exp(--~r~/}t) (23) 

fie ~ 4 exp(--�89 (24) 

ln(Ao/A2) ~ --4 cos(�89 exp(--�89 (25) 

Even at T,, ~/A is an analytic function of T. Thus comparing the above 
results with (18), we see that all the quantities behave similarly to P0 at T~, 
namely they and their derivatives vanish. 

1.2. Scaling Predictions 

Such essential singularities are unusual. It is supposed that at T~ the 
thermodynamic properties of a system normally have branch point singu- 
larities, in particular that 

Po oc (T~ - T)% 

,, oc ( T ~ -  :r), ,  

Ling  OC (T,  - -  T)  ~-~' 

ln(Ao/A~.) oc ( T , -  T)" 
(26) 

Scaling theory (14,15) predicts various relations among such exponents, 
for instance, that 

- /  v = d r  = 2 - - c J  (27) 

822/9/2-4 
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where d is the dimensionality of the system. Thus if we take the proportion- 
ality signs literally in (26), in two dimensions scaling theory predicts that the 
quantities 

a -1 ln(Ao/A2) and (Y--2/sing (28) 

tend to finite nonzero limits as T - ~  T~. 
From (23)-(25) we see that this is so for the F-model. Thus in this sense 

the F-model satisfies the scaling predictions, even though i~, v, and ~' do not 
exist. 

We discussed the possibility of applying such extended scaling predic- 
tions to the zero-field staggered susceptibility when we first reported '5~ 
our result for Po.  

1.3. Effect of Direct Fields 

Our conditions (1) are equivalent to requiring that no direct (i.e., 
nonstaggered) electric fields be applied to the lattice. However, if one performs 
low-temperature series expansions, C~) it soon becomes apparent that for an 
infinite lattice configurations 1 and 2 (3 and 4; 5 and 6) occur in pairs. Thus 
adding direct fields does not affect the free energy or the staggered polariza- 
tion, so long as they are not strong enough to take the system oflt of the 
ordered antiferroelectric state. 

1.4. Long-Range Order  

One can relate the spontaneous staggered polarization to the long-range 
behavior of the arrow-arrow correlation function by arguments similar to 
those used for the Ising model [Eqs. (5.15)-(5.16) of Ref. 16]. If as ~ is the 
Pauli operator acting on the arrow in column Y in some particular row of the 
lattice, then 

P02 ~ lim (--1) J-1 (O'lz,yr z) (29) 
J~co 

Here ( . - . )  means a thermal average over all configurations of the lattice, 
in the limit when the lattice is infinitely large. 

The transfer matrix T commutes (~) with the Heisenberg chain operator 

N 

as %~+i + A ~  ~ %;+0 
J=l  

and the eigenvector corresponding to the maximum eigenvalue of T also 
corresponds to the minimum eigenvalue of Yr. It follows that we can also 
use (29) to determine the long-range order of the Heisenberg chain, taking 
<" . )  now to mean a ground-state expectation value for an infinite chain. 
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1.5. Outl ine of Working 

We have now stated and discussed our result (13). The rest of this paper 
is concerned with deriving it. 

In Section 2 we generalize the model so that it becomes inhomogeneous, 
a set of parameters wl  ... .  , w N ( W l '  , . . . .  WM' ) being associated with the columns 
(rows) of the lattice, and a staggered field Ez , j  with each site (/, J). This 
enables us to define a local spontaneous staggered polarization Po(I ,  J ) .  

In Section 3 we consider the row-to-row transfer matrices (one for 
each row) of this inhomogeneous model. In zero fields these all commute 
and have the same eigenvectors. In particular there are two eigenvectors I0) 
and ]1) corresponding to the asymptotically degenerate (in magnitude) 
maximum eigenvalues of each transfer matrix. We express Po(I ,  J )  as the 
matrix element of crj ~ between these eigenvectors. This shows that P0(l, J )  
is in fact independent of L J,  wz , . . . ,  W N ,  and w l ' , . . . ,  wM' ,  and is simply the 
spontaneous polarization of the normal homogeneous model. 

We make a number of mathematical assumptions (which we believe 
to be exactly correct) in Sections 2 and 3. To clarify the situation we sum- 
marize in Section 4 the results of these sections that we need. 

The rest of the paper is completely rigorous. In Sections 5 and 6 we 
derive exact general formulas for the eigenvectors and the matrix elements. 
In Section 7 we consider the inhomogeneous lattice with ws = 

l~-(2J - -  N - -  1 ) / N  for J = 1,..., N. In this case the required matrix elements 
can be evaluated exactly, for finite N. This enables us to calculate P0. 
Since P0 is independent of wl  . . . . .  W N ,  this gives us P0 in general, and in 
particular for the homogeneous system. 

Note that the generalization to an inhomogeneous lattice is essential 
to this derivation. 

Where possible, detailed working is confined to the appendices. 

2. I N H O M O G E N E O U S  M O D E L  

Here we generalize the homogeneous model discussed in Section 1 to an 
inhomogeneous model which is exactly soluble in zero staggered fields/9> 

Consider first the case of zero staggered fields and let the Boltzmann 
weights a, b, c defined by (1) and (8) vary from site to site, in such a way that 
at the site on row I and column J their values are 

al.., = pi.J sin07 + w/ - -  w j) 

b~.s = Pl.s sin(r/ - -  w/ + ws) (31) 

CI,J = Pl ,S  sin(2~7) 
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where I = 1,..., M and J = 1 ..... N. Thus r / is  some fixed parameter, and 
wl',..., WM' (Wl .... , WN) are parameters associated with the rows (columns) 
of  the lattice. The pi.J are simply normalization factors. 

We can verify that 

a 2 2 A [ z,s ~- bi, s - -  c~,sl/(2ai,sbi,s) --cos(2r/) (32) 

Thus A is the same for each site of the lattice. We consider here only the 
ordered state, when 

A < - -  1 (33) 

Comparing this with (9), we see that ~ can be chosen pure imaginary, such 
that  

~7 = �89 (34) 

where ;~ is real and positive. 
In the phys ica l  regime (PR) the Boltzmann weights must be positive. 

The parameters p1.s,  wi' ,  and Ws can then all be chosen to be pure imaginary, 
such that 

[ Im(w/' - -  Ws)l < �89 all /, J (35) 

Note that  the normal homogeneous case is contained in this regime, 
oceuring when W 1 '  - -  - -  WM' and w~ - -  - -  WN �9 

We shall find it convenient to extend the PR to the f u n d a m e n t a l  regime 
(FR), where A is still real and positive, (33)-(35) are satisfied, but the complex 
numbers w / ,  and Ws need not be pure imaginary. On the contrary, we shall 
find it helpful at times to focus attention on the case when they are real. 

2.1. Staggered Fields 

Now add the staggered fields E, E'. I f  we share the resulting energy of 
each arrow between its end points, then these energies can be incorporated 
into E 1 ,..., e6. From Fig. 1 we see that the effect of  this for the homogeneous 
lattice is to add (subtract) an energy E - -  E '  to e 6 (es) on A sites, and to % 
(%) on B sites. Energies el ,  ~2, E3, e4 are unchanged. 

Again we generalize to an inhomogeneous lattice and suppose that 
instead of adding two fields E, E' ,  we add a set of "vertex staggered fields" 
E , . j  such that  at site (/, J )  the vertex energies ej are incremented by Aej,  
where 

Aej = 0 ,  j =  1 , 2 , 3 , 4 ;  Ae5 = qZEi .s ;  Ae6 : zLEt . j  (36) 

The upper choice of sign in (36) applies on A sites, the lower on B sites. 
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2.2. Local Staggered Polarizations 

We now want  to define a site-dependent spontaneous staggered polar iza-  

t ion  corresponding to the field E1,s (for some particular values of I and J). 
We encounter a problem in that unless we specify the w/, Ws, and E~.j 
(which we do not want to do), the limiting free energy per vertex f of a large 
lattice, normally given by (5), is not defined. 

The easiest, though nonrigorous, way out of this dilemma seems to be 
to regard f as defined by its "low-temperature" series expansion. At low 
temperatures we see from (2), (8), and (9) that for the homogeneous system 
c >~ (a, b), A ~ --1, h is large and t ~ 1. 

Similarly, for the inhomogeneous system defined above we can consider 
the purely ordered state when A --~ o% while h - l w / ,  ?t-~ws, and ~E~,s remain 
fixed, satisfying (35). From (31) it follows that at each site 

i c~.s 1>~ max([ al.j ], ]b~,j 1) (37) 

The dominant contribution to the partition function therefore comes 
from arrangements of arrows on the lattice such that at each vertex the 
arrows are in configuration 5 or 6 of Fig. 1. There are two such arrangements, 
as shown in Fig. 2. Neglecting all other arrangements, it follows that in the 
completely ordered state the partition function is 

= c o s h  

I=1  J = l  
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Fig. 2. One of the two zero-temperature purely ordered 
states of the lattice. The other state is obtained by reversing 
all arrows. 
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where 
M N 

go = t~ I'-I ci.j (39) 
1 = 1  J = l  

is the partition function in zero staggered fields. 
In principle one can generalize the methods used by Nagle (al for the 

homogeneous system and develop a perturbation expansion of Z in increasing 
powers of t. To any given order in this expansion the only contributions come 
from arrow arrangements on the lattice that differ from the two completely 
ordered arrangements by reversing a finite (i.e., independent of M, N) 
number of arrows. Thus to any given order we can take M, N sufficiently large 
that these arrangements can be classified uniquely as being either perturba- 
tions on the state shown in Fig. 2, or on the state obtained by reversing all 
arrows in Fig. 2. Calling the contribution from the former states Z+ and the 
latter Z ,  we have 

Z =  Z+ 4- Z_ (40) 

Further, on performing the expansion, we soon find ourselves expecting 
that 

M N 

In Z• = --fl ~ ~ f• J) (41) 
I = 1  J = l  

where to any given order in the perturbation expansion f• J) is independent 
of M and N, being a function only of the Boltzmann weights of the sites in 
some neighborhood of (I, J). For instance, to order t 2 we can choose 

f• J)  = %(/, J)  q: E,,s 

+ t 2 exp[~ fi(Ei.s 4- EI.j+, 4- E,+,,s 4- EI+I.J+O] 

4- O(t a) (42) 

Thus we can think of f• J) as local free energies corresponding to the 
two possible ordered thermodynamic states of the lattice. 

We define a local staggered polarization P(I, J) by 

P(I, J) = fl-1 a(ln Z)/aE,.s (43) 

Suppose we hold the mean of the EI.j fixed at some positive value and let 
M, N become large. Then from (38) and the above equations, for sufficiently 
small t, Z_ will be exponentially small compared with Z+.  Thus in this 
rather ill-defined but plausible limit 

e(I, J) -= fi-~ ~(ln Z+)/OEI,s (44) 
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To any given order in perturbation expansion, only a finite (i.e., in- 
dependent of M, N) number of local free energies in (41) depend on Et.s,  
so we expect the r.h.s, of (44) to be independent of M, N for a sufficiently 
large lattice. 

Having taken On some sense) the limit of a large lattice, we now define 
a spontaneous local staggered polarization Po(I, J) by 

Po(I, J) = [P(I, J)Jel,1 ..... ev,u'O + (45) 

Comparing the above procedure with (5), (6), and (12), we see that 
Po for homogeneous staggered fields is obtained by setting all E~,s equal to E 
and differentiating (MNfi) -z In z+ with respect to E. Thus 

M N 

Po == (MN) -1 Z Z Po( I, J) (46) 
1 =1  1 = 1  

i.e., P0 is the average of the local polarizations. 
In an earlier paper (9) we evaluated Po(I, J) to order t 4 and found that 

P0(I ,J)  - 1 - - 4 t  2 + 4 # + . . .  (47) 

which is a remarkably simple result. It suggests that Po(I, J) may in fact be 
independent of I and J, and of wz',..., WM' and wl , . . ,  wN. In the next section 
we shall present a plausible (but unfortunately again nonrigorous) argument 
that this is so. 

3. T R A N S F E R  M A T R I C E S  

We now set up the row-to-row transfer matrices of the model and 
express Po(I, J) as a matrix element. 

We consider the inhomogeneous model, with Boltzmann weights given 
by (31). Thus there are M transfer matrices T1 ,..., TM, one for each row of 
the lattice. 

Again we first consider the case of zero staggered fields. Let r and ~ '  
be the configurations of the arrows on the rows of vertical bonds below and 
above row I of sites. (In each row there are N bonds, each arrow can be 
up or down, so ~b and r  each have 2 x values.) 

The 2 ~r by 2 N transfer matrix Tt for row I then has elements 

Tx(~, q~') = ~ co(C, I, 1)co(C, I, 2) -.. co(C, I, N) (48) 
C 

where the sum is over all arrangements C of intervening horizontal arrows 
and co(C, I, J) is the corresponding Boltzmann weight (a, b, or c) of the 
arrow configuration at the site (I, J). 
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The zero-field partition function of the lattice is then 

Z0 = Tr(TIT2 ' "  Ta4) (49) 

Now add the local staggered fields E1,1 .... , EM,N as in (36). We can do 
this by sharing the field energies between the vertical arrows, giving an energy 
�89 to vertical arrows that point into A sites (I, J )  or out of B sites (I, J), 
and --eE~,j for other arrows. (Thus each arrow gets two contributions, one 
from each end point.) 

Define operators Sz .... ,SM by 

N 

s ,  = y~ ( -1)J  E , , j ~  (50) 
Y=l 

where ~s ~ is the Pauli operator acting on the arrow (or "spin") in column J. 
Further, let 

Vz = exp(--�89 (51) 

then the transfer matrix for row I in the presence of fields is 

~ / =  Vzl)Ty 1 if I is even 
(52) 

= V}-ITxVI if I is odd 

and the partition function is 

Z = T r ( ~ - . . J - M )  (53) 

3.1. Eigenvalue Degeneracy 

Again we find it helpful to consider a perturbation expansion about the 
completely ordered state of Fig. 2. 

Let 

~ + = ~ ' ~ ' . . . ~ ' ,  ~b = ~ ; ~ ' ; . . . ~ ' ~  (54) 

We see from Fig. 2 that only these row configurations occur in the completely 
ordered state. Thus the dominant elements of the transfer matrix T I a r e  

N 

Zi ( l~+ ,  I~) ) = ri(cf) (I)+) = I ~  cI , j  ( 5 5 )  
J = l  

LetA0,1 andAl,1 be the two largest (in magnitude) eigenvalues of T~, and 
10) and I1) their corresponding eigenvectors. Suppose we develop perturba- 
tion expansions for these about the completely ordered state, e.g., in in- 
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creasing powers of t. Then to order t r we find the only elements of T~ that 
enter the calculation are TI(4, 4') and Tt(4' ,  4) ,  where 4 differs from 4 + ,  
and 4 '  from 4 _ ,  by at most r reversals of arrows�9 

If r < �89 the transfer matrix therefore effectively breaks up into two 
blocks, one at top right, the other at the lower left, and the eigenvalue problem 
naturally decomposes into finding vectors [§ and [--> and an eigenvalue 
/~ such that 

Tel -;-) ~ / z~ /  - - ) ,  Tt i - >  ~ k~ 1 +> (56) 

Here I +> has nonzero elements only for configurations differing from 4+ 
�9 1 by reversing at most r arrows. Similarly for l--> and 4_  Thus if r < ~N, 

there are no configurations for which 1+> and [--> both have nonzero 
elements. Since esz, St are diagonal operators (independent of t), it follows 
that 

( +  I - >  --~ ( -  [ +> --~ ( +  [ ~ / I  - >  --~ < -  I ~ I r  +> 
(57) 

(-~- l S/[ - - )  ~ ( - -  IStl  +> __~0 

We use the approximation signs to denote the fact that the equations 
are true only to order t ~', r < �89 For  nonzero t and finite (but large) N we 
expect (56) and (57) to be in error by terms that decay exponentially with N. 

The matrix T~ is symmetric with respect to reversing a l l  arrows, i.e., it 
commutes with the operator 

R = ~i~a2 . . . .  ~ N  ~ ( 5 8 )  

From (56) it follows that 

1--) = R!  § [ +> = R r--)  (59) 

Also, from (50), St anticommutes with R, so we can define 

st - <+  [St / +> = - < - / S t ] - >  (60) 

Here (q- I and {--[ are row vectors having nonzero elements only for the 
same configurations as I §  and r-->, respectively, and satisfying an analog 
of (56), namely 

( +  '; TI ~ / z l ( - - ] ,  {--[ Ts ~ / z ~ ( +  [ (61) 

This ensures that if ~+ '1  is a solution of (61) for some other eigenvalue 
/z/, then ( §  [ -5> = 0. In this sense the vectors are orthogonal. 

The reader who finds this confusing is advised to focus his attention on 
the case when the w / a n d  wj are real. The transfer matrix Tt is then Hermitian 
and in the usual way ~ i  [ is the complex conjugate of the transpose of /  ~>. 
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In any event we require for the moment that the vectors be normalized, 
so that 

( + i  . )  -= ( - - I  --7 = 1 (62) 

From (56) it is apparent that the largest eigenvalues of Tz are 

Ao, I ~_ fzi , 

and the corresponding eigenvectors are 

10) = i + )  + i - ) ,  

-/11, I ~ --/z I (63) 

' 1 )  = ', §  - - I  --)  (64) 

Thus to order r < �89 in perturbation theory the largest eigenvalues are 
degenerate in the sense that they have the same magnitude. We have observed 
this phenomenon explicitly in earlier papers. <9,12) 

The inhomogeneous model defined by (31) has one very important 
property, namely that the transfer matrices T1 ,..., TM all commute and have 
the same eigenvectors, i.e., the eigenvectors of Tz do not depend on the row 
parameter w / ( n o r  of course on any other of wl' ,  .... WM'). 

Thus the vectors 10), I 1), [ §  and I - -)  are all independent of L 
From (49) it follows that in zero field and for M large (and even) 

Z0 ~'~ 2/z~/x2 "'"/z~t (65) 

The argument is now similar to that used by Yang 117) and Schultz 
et al. ~6~ for the spontaneous magnetization of the Ising model. Introduce 
the fields Ez,s and suppose they are sufficiently small that $1 can be treated 
by first-order perturbation theory in (51) and (52), but that M is large enough 
for the cumulative effect of $1 ,..., SM in (53) to be appreciable. 

In the representation which diagonalizes T~ ..... TM, each ~ is still 
"almost diagonal," and its largest elements lie in the subspace spanned by 
I 0) and 1 1). For large M we expect the effect of all other elements to become 
negligible. Thus we replace each ~ by its 2 by 2 projection onto the subspace 
spanned by [0) and I 1), or equivalently and more conveniently by I q-) 
and I --).  Thus from (56), (57), and (60) we can set 

T I = /.L I (01 10) , S I = S, (10 0 1) (66) 

Substituting these into (51)-(53), we obtain 

Z = 2Zo cosh[/3(Sa + s2 + "'" + SM)] 

Let 

P+ = ( - -1)s(+ I ~rf [ + )  

(67) 

(68) 
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Then from (50) and (60) 

N 

SI = 2 ~I,JpY ( 6 9 )  
J=l 

SO 

4 
I=1 d=I  

(7o) 

From (54) and (68) we can see that the Ps are all positive, at least for 
sufficiently small t, so from (40) and the discussion after (43) 

Z+ = Z 0 exp fl Ex.jp 
J = l  

(71) 

From (44) and (45) the local spontaneous staggered polarization is 

P0(I, aT) = P,s (72) 

Thus Po(I, J) is independent of L Also, since J + )  is independent of 
wz',..., wM', so is Po(I, J). 

However, instead of dividing the vertex field energies E• among the 
vertical arrows as we did to obtain (50), we can divide them among the 
horizontal arrows and perform the above reasoning with column, rather 
than row, transfer matrix matrices. In this way we find that Po(1, J) is also 
independent of J and wl ..... W:v. 

Thus, using (46), the overall and local spontaneous staggered polariza- 
tions Po and Po(1, J), together with the matrix elements pc,  must all be the 
same function of ,1 (or t) only, as we surmised from our series expansion (47). 

This is a truly remarkable result---it means that to obtain P0 for the 
normal homogeneous lattice, it is sufficient to evaluate the matrix element 
(68) for any J a n d  any values ofw~ ,..., WN, SO long as the system is sufficiently 
close to the completely ordered state. 

"Sufficiently close" presumably means that the perturbation expansions 
in powers of t ----- e -a should converge, and that the parameters should lie in 
some region including the completely ordered state where no other eigen- 
value crosses (in magnitude)A0.~ or Axa.  From the result (13) (as well as the 
other previous results given in Section 1) the first condition is apparently 
satisfied if 3, > 0. The second condition is more difficult, but from the be- 
havior when/~ -.- 0% and in the physical regime of the homogeneous model, 
we conjecture that it is sufficient for the system to be in the FR, i.e., for (35) 
to be satisfied. 
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From (57), (59), (62), and (64) we can verify that 

( 0 L 0 )  = (1 I 1) = 2 

(0[ ors' I 1) = (1 I Crs~[ 0) = 2(@ ] crs~[ -+-) 

So from (68) 

(73) 

(74) 

psZ = (01 o-ll 1)(1 L aS I 0)/(0 [ 0)(1 [ 1) (75) 

This expression for Ps  has the advantage that it involves only the eigen- 
vectors of Tt ,  for which exact expressions are available, (2,9) and is independent 
of their normalizations. 

4. A S S U M P T I O N S  

Almost the only rigorous remark made so far is that T1 ,..., TM commute 
and have the same eigenvectors. It therefore seems worthwhile consolidating 
our assumptions, which we can list as follows. 

(i) If A, w~', . . . ,  WM' and w 1 ,.. . ,  WN lie in some closed subregion of the 
FR, then the limit (taken through even values of N) 

P0 = lira [((01aN~l 1)(1 [r I 1)) a/~] (76) 
N-~Qo 

exists and is independent of wa', .... WM', and w~ ,..., w y �9 

(ii) P0 thus defined is the spontaneous staggered polarization. 

(iii) A0,~ and Al.z are the largest (in magnitude) eigenvalues of Tz 
throughout the FR, all other eigenvalues being strictly less in magnitude. 

Since I 0) and I 1) are independent of w~', .... wM', obviously P0 must be, 
too. The justifications for the other assumptions in (i) and (ii) have been 
given above. When these are taken into account, assumptions (i) and (ii) 
appear to be little worse than those commonly made for the spontaneous 
magnetization of the Ising model, a6) 

Assumption (iii) ensures that no third eigenvalue crosses (in magnitude) 
A0j or A~,l inside the FR. This enables us to identify the vectors [ 0) and [ l )  
by continuity arguments from the solution in the completely ordered state. 
The assumption fits the behavior in the completely ordered state and makes 
sense in the physical regime (a, b, c positive), where the FR becomes the 
region c > a + b. If necessary, we could weaken this assumption by con- 
tracting the FR--our  results would then simply be valid only in this contracted 
region. 
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The rest of  the working is completely rigorous. We evaluate the square 
roo t  in (76) exactly for finite, even N (taking �89 to be a prime number)  when 

wj = �89 - -  N - -  1 ) / N ,  J = 1 . . . . .  N (77) 

[Thus wl .... , WN are all real and we can certainly satisfy (35).] We then 
take the limit N--+ oe and obtain P0 �9 

5. E n G E N V E C T O R S  A N D  E I G E N V A L U E  O F  Tz 

The elements Tx(qS, q~') of  the transfer matrix are zero unless q) and qY 
have the same number  n of  down arrows. Thus Tx breaks up into N + 1 
diagonal  blocks (n = 0,..., N)  and we can look at one such diagonal block 
with a given value o f  n. 

A configuration ~0 can then be specified by Xl ..... x~,  the locations of  the 
down arrows, arranged so that  

1 ~ x ~ < x ~ < " .  < x n  ~<N (78) 

We write J f )  for  a typical eigenvector, and f ( x l  . . . .  , x n )  for its element 
corresponding to the configuration ~ .  These elements can be obtained by a 
generalized Bethe ansatz(% 

We find it convenient to introduce a direct electric field H acting on the 
single column of  horizontal  bonds  between columns N and 1. (Later we shall 
let H ~ 0; this avoids some mathematical  problems in calculating normaliza- 
t ion factors.) 

Then f rom Ref. 9, after making several notat ional  changes, we find that  

Y.t  s in(u , : - -u j  + 2"0) t 
f ( x ,  , . . . ,  x ~ )  - -  ,..~ ~, I - I  s in(u / - -  uj) t 

<i<J.<n 

• q~(ul, xl)q~(u2, x2) "'" q~(un, x~) (79) 

where the functions q~(u, x) are defined by 

1 X--1 

~(u ,x)  = s i n ( u - - w x - - " 0 )  1-[ --  y = l  

sin(u - -  ~,~ + "0) 
sin(u --  ~,~j - -  "0) 

(8o) 

The summat ion in (79) is over all n! permutat ions U of  ul ..... u,,. These are 
to be chosen so as to satisfy the equations 

~ sin(u~. --  wj + '0) - - h  2 l l  s in (u / - -  uj + 2'0 
F[  - -  s i n ( u / - - w j - - ' 0 )  = -*  sin(u/ - -  uj --  2" 0 ) 

(81) 
]=i ]=i - 

for  i 1 ..... n, where 

h = e -~r  (82) 
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The corresponding eigenvalue A~ of Tr is 

I n 
AI  = h-la1,1 "'" aI,N [ I  sin(w/ -- uj -- 2~?) 

j=l 

+ hbta "'" bI,N l-I s i n ( w / -  uj + 2~/) 
j=l 

Note that Eqs. (79)-(81) do not involve WI t. Thus T1 . . . . .  T M all have 
the same eigenvectors, as we have stated. 

We define ( f l  to be the row vector whose transpose is the eigenvector 
of the transpose of Ts, with eigenvalue At .  This ensures that two eigenvectors 
I f )  and I f ' )  with different eigenvalues are orthogonal in the sense that 

( f  I f ' )  = ( f '  l f )  = 0 (84) 

T r a n s p o s i n g  T I is equivalent to interchanging the Boltzmann weights 
ai, J and bl,s (for all J )  and negating H. From (32) this is accomplished by 
negating ~/, Pl,J, and H. From (81) we can leave ul ..... un unchanged, while 
from (83) A1 is then unchanged. 

Thus the elements of ( f [  are given by (79) and (80) with only ~/negated. 
Perhaps this will appear clearer if we consider the case when the We' 

and ws are real but ~/ and the p,,s are pure imaginary. (This lies in the FR 
and is a case we shall return to later.) The az,s and bt,j are then complex 
conjugates, while Ct,s is real. Thus T I is a Hermitian matrix. Provided 
ul ,..., un are real (they are for the two maximum eigenvalues), negating ~/ 
in (79) and (80) is equivalent to complex conjugation. Thus ( f l  is then 
the complex conjugate of the transpose of If) ,  as we expect. 

We shall also consider another eigenvector hg), defined in the same way 
as I f ) ,  but with ul ,..., un replaced by vl .... , v~ and the direct field H set equal 
to zero, i.e., h -- 1. Some quantities that we shall need frequently are 

----- (sin 2~7) ~ (85a) 

)' = 1-[ s in(ui--  uj) (85b) 

Y' = r I  sin(vj--  vi) (85c) 

S = FI sin(us - vj) (85d) 
i=l j= l  
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N 

AN(u) ~- 1~ sin(u - -  w j -  7]) (85e) 
J = l  

N 

B~v(u) = H sin(u - -  ws q- ~) (85f) 
J = I  

n n 

~ = H A~(u3, ~:~: = f I  BN(~) (85g) 
i = 1  i = 1  

5.1. Analytic Properties of Eigenvectors 

We can think of  the elements of  Ef>, as defined by (79) and (80) [ignoring 
(81) for  the moment] ,  as functions of  u~ ..... u~. Possible poles occur  when 
u~ ---- uj or ui ---- w~ + ~7 for  any i,j, x (i # j ) .  These poles can be removed by 
defining 

F(X) = 7~uf(X) (86) 

Regard  F(X) as a funct ion of  ul (say). Then it is a sum of  n terms, each 
of  the fo rm 

N + n - - 2  

const • I-I sin(ul - -  dj) (87) 
j = l  

where d~ ..... d~+~_2 are independent  of  Ul. Expanding  each sine as --�89 
times the difference of  two imaginary  exponentials,  it follows that  F(X) is 
o f  the fo rm 

p~(ui) ~-- ~ Cj e x p [ i ( 2 j -  m)u~] (88) 
J = 0  

where m ~ N § n - -  2 and the Cj are independent  of  u~. 
Equat ion  (88) defines a class of  entire functions of  u i .  We encounter  

such functions often enough in the working  to war ran t  giving them a name.  
Let  us call them p-functions of  degree m. 

We now establish an e lementary theorem that  we shall use frequently. 

Theorem 1. I f  two p-funct ions  of  degree m are equal at m - ~  1 
values of  their argument ,  these values being distinct to modulus  ~r, then the 
functions are identically equal. 

Pro@ Consider  ei~pm(u). F r o m  the definition (88) this is a po lynomia l  
o f  degree m in the variable e 2iu. I f  two polynomials  of  degree m are equal  for  
m + I distinct values of  their argument ,  then they are identically equal. 
This proves the theorem.  
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From now on we use "dist inct"  to mean "distinct to modulus  ~r". 
Returning to considering f ( X )  as defined by (79), note that  it is by 

construct ion a symmetric funct ion of  u~ ..... u , .  Thus the apparent  simple 
pole occurring when a u~ equals a uj (i 4= j )  must  be spurious, having residue 
zero. [If it were nonzero,  then sufficiently close to ui = uj we would have 
f ( X )  oc 1/sin(ui --  uj), which is antisymmetric in ui , us .] 

It  follows that  ( u f ( X )  is an entire function of  u~ ,..., u ,  and more strongly 
that  

( u f ( X )  = symmetric function of  u~ ,..., un,  being a 

p-funct ion of  degree N - -  1 in each of  

u~ ,..., u,~ (89) 

6. M A T R I X  E L E M E N T S  

Defining I f ) ,  [g ) ,  and (g  L as in Section 5, we see that  

~N~N'(g I f )  = ~N~:.~' ~ g*(x1 , ' " ,  Xn) f ( xa  ,..., X•) 
X 

= Z ~  l-I { [ s i n ( u i - u j + 2 ~ / ) s i n ( v j - v i + 2 ~ / ) ]  
g g l<~i<j<~n 

• [sin(u/ - -  uj) sin(vj --  vi)]-z} 

n xj--1 

• ~ F[ 1-I [sin(vj - w,, - ,/) sin(u~ - w~ + ~7)] 
X j = l  y = l  

N 

• 1-[ [sin(v~ - -  w~ § 7) sin(uj --  w~ --  7)] (90) 
y=x~+l  

where the summat ion  over U (V) is over all n! permutat ions of  uz ,..., u~ 
(vl .... , vn), and the X summat ion  is over all integers xl ..... x,~ satisfying (78). 

This is a very complicated expression to handle. Hitherto the only 
progress has been made by Gaudin  (is) for  the similar problem of  the one- 
dimensional Bose gas, but  then only for scattered states on an infinite line. 

It  turns out, however, that  the r.h.s, of  (90) can be simplified to a form 
which makes its dependence on N and wl ,..., WN clearer. We state the result 
here and give an inductive p roof  in Appendix A. We find that  

~ n ~ ' ( g  I f )  = (IX77') -~ E ev E E "" E 
V 1 2 n 

i=l s i n ( u i -  vi) ~=1~-i 
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where e v is the signature ( + 1  or --1)  o f  the pe rmuta t ion  V, and  ~ i  means  
we are to add the s u m m a n d  and the s u m m a n d  with (u~, vi) interchanged,  
i.e., to sum over  the two permuta t ions  of  (u~, vi). Thus there are n! • 2 ~ 
additive terms on the r.h.s, o f  (91). 

To  make  these points  clearer, we write (91) explicitly for  n = 2. Define 

S(u, u I v, v') -= A~(u) A~(u') B~v(v) BN(v') 

• sin(u - -  v' + 2r/) sin(u' - -  v + 2,7) (92) 

[sin(u - -  v) sin(u' - -  v')] -1 

Then  the r.h.s, o f  (92) becomes (per forming the summat ions  progressively 
f rom right to left) 

(t~77')-~[S(u~, u21 v~, v~) + S(u~ , v2 [ v~, u2) 

+ S(v~, u~ I u~, v2) + S(v~, v~ I u~, u~) - S(u~, u2 i v~, v~) 

- -  S ( u l ,  v~ I v2, u2) - -  S (v2 ,  u2 I ul , vl) - -  S(v~,  vl I u l ,  u~)] (93) 

To  evaluate (76), we also need ( g l  cru ~ l f ) .  Let  

~ U  U /  
(94) 

be an opera to r  acting on the a r row in co lumn N. Then  

( g  i ~N* l f )  = 2 ( g  J rN I f )  - -  ( g  I f )  (95) 

N o w  ( g ]  rN r f >  is fo rmed  in the same way as (g  r f ) ,  except that  no down 
ar row is al lowed in co lumn N. Thus ( g i  ~'N I f )  is given by Eq. (90) for  
(g  I f ) ,  but  with the X summat ion  restricted to the domain  1 ~< xl  < "" < 
x~ ~< N - -  1. Not ing  tha t  N does not  explicitly enter Eqs. (79) and (80), 
it follows that  

(g  I ~'N r f )  = <g I f )  as given by (91), but  with N 

replaced by N - -  1 in 

~N , ~N t, AN(U), BN(U ) (96) 

6.1. El imination of N 

F r o m  (85g) and (91) we see that  N enters the expression (91) for  ( g  I f )  
only via the ratios Bx(u i ) /Ax (u i )  and AN(vi)/BN(Vi) (i ~ 1,..., n). These are 
precisely the rat ios tha t  occur  on the 1.h.s. o f  (81) (and its analog for  vl ..... v ,  
with h = 1). 

8z~/9/~'-5 
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We first explicitly consider the effect of interchanging (ui, v0 for 
i = kz ,..., kr in (91) and then use Eq. (81) and its v analog. This gives 

( g  I f )  = ( ~ ) - 1  R,~(uz ,..., us I vl ,..., v~) (97) 

where 

R n ( u  I . . . .  , Un 11) 1 . . . . .  1)s) 

= (YT')-I 8 ~ v ev li=I~z [ s i n ( u i -  Ui)] -1  

r i j # K , i  l~kl<"" < k ~ n  

X [1 - I  I-I s i n ( / ) / -  U 3" -~- 2~) 1 
= j=K:f:i . I  

l i~K ~K [ s i n ( u j -  ui § 2 , ) s i n ( v i -  vj-4- 2,)11 (98) x 

Here K denotes the set of integers kl ..... k~.. The products denoted i = K 
are over the r values i = k l ,  k~ ,..., kr ; those denoted i # K are over the 
n -- r values i = 1 .... , n excluding k~ ,..., k~. Similarly forj .  Each summation 
applies to all the terms following it. 

Similarly, from (96) we find that <gl ~'N If> = <g i f> as given by 
(97) and (98) but with an extra term in the summand of (98), namely 

1-I [sin(ui -- wN --  ~) sin(vi - -  w~ + ~)/sin(ui - -  wN § ~) sin(vi -- w~ --  ~/)] 
i=~ (99) 

6.2. Recursive Definition of R. 
The expression (98) is still extremely complicated. (It is interesting to 

note that it reduces to an expression similar to Gaudin's A when h = 0.) 
However, it turns out that Rs can be defined by a comparatively simple 
recurrence relation. 

Regard uz ..... us and vl ,..., vs as independent variables and Rs as 
defined by (85b)-(85d) and (98). The sum in (98) is by construction an anti- 
symmetric function of vt ,..., v,~, so it contains 7' as a factor. Also, the 
summand of the V summation is unaffected by applying the same permutation 
to both u~ .... , u, and vl ,..., v , ,  so the V summation (with signature Cv) 
could be replaced by a U summation (with signature Eu). Hence the sum is 
also an antisymmetric function of u z .... , us and must contain 7 as a factor. 

Also, the possible poles arising when a ui equals a vj are cancelled by the 
factor & Thus Rs is an entire function of u~ ..... Vs. 
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N o t i n g  the symmetr ies  and  g rowth  rates as any  uj or  vj tend to •  

it  follows tha t  

R n ( u i  .... .  un L vl  ..... vn) 

= symmetr ic  funct ion o f  ul ,..., u~ and  of  v I .... , v~,  being a 

p - func t ion  of  degree n - -  1 in each of  ul ..... u~ and v~ ..... v~ (100) 

Suppose  tha t  u~ - ~  v~ = x. Then the sum in (98) is domina t ed  by  those  
te rms conta in ing  a fac tor  1/sin(un - -  v~), i.e., by  those pe rmuta t ions  V tha t  

leave v~ unchanged.  
Consider ing  the terms in the r, k~ .... , kr summat ion ,  we find tha t  i f  

kr < n, they are the same as i f  we replaced  n by  n - -  1 and  mul t ip l ied  by  a 
fac tor  

I-i s i n ( u / - -  x -7 2~7) sin(x - -  vi § 2~/) (101a) 
i=1 

Alternat ively ,  if  k~. = n, they are the same as i f  we replaced n and r by  
n - -  1 and r - -  1 and mul t ip l ied  by  

n 1 
--h2 I-[ [sin(x - -  ui § 2~7) sin(vi - -  x + 2~7)] (101b) 

i=1 

Allowing  also for  the effects o f  le t t ing u~ --~ vn in ),, },', S, it  fol lows tha t  

R~(u~  , . . . ,  u~_~ , x E v~ . . . .  , v ~ - l  , x )  

I 
n - - 1  

= I-I [sin(ui - -  x § 2~7) sin(x - -  vi _ 27)] 
i=l  

n--1 I 
--hZ I ]  [sin(x - -  ui + 2~7)sin(vi - -  x + 27)] 

i=1 

• Rn_I (Ul  . . . . .  u~- l ]  vl ,..., v~-l) (102) 

When  n = 1 it is easy to see f rom (98) and  (85a)-(85g) tha t  

R ~ ( u l  v) = l - h 2 ( 1 0 3 )  

These equat ions  (100), (102), and  (103) are sufficient to de te rmine  R ,  
uniquely.  To see this, suppose  R,_~ is k n o w n  and  regard  R~ as a funct ion o f  
u , .  I t  is a p - func t ion  o f  degree n - -  1. Equa t ion  (102) gives i ts value when 
un = v~. By symmet ry  it also determines  R,~ when u~ = vl ..... vn.  Thus  R~, 
is k n o w n  at  n values,  and  i f  v~ .... , v~ are distinct,  it  fol lows f rom Theorem 1 
tha t  R~ is uniquely  determined.  The cases when two or  more  v / s  are equal  
can then be de te rmined  by  cont inui ty.  

822/9/2-5" 
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Note  that  when h ~- 1 the solution o f  (100), (102), and (103) is clearly 
R~ ~ 0. Thus if I f )  and I g )  are bo th  eigenvectors of  the zero-field transfer 
matrix and ~ 4 = 0 (i.e., no u~ equals any vj), then f rom (97) 

(g  I f )  -= 0 (104) 

Thus in this sense two distinct eigenvectors are or thogonal .  This is a gratifying 
result, verifying elementary algebra, but  does not  help us calculate normaliza- 
t ion factors. I t  is for  this reason that  we have asymmetrically introduced the 
parameter  h, since it enables us to usefully define (g  I f )  for  distinct u~ ..... u ,  
and/)1 . . . . .  o n , and later to take limits such as h --~ 1, ur -+  v~, i = 1 ..... n. 

6.3. Relation Between (g I f )  and (gl  ~ l f )  

One can obtain similar recursive relations for  the expression (99) for 
( g [ ~ ' N I f ) ,  and hence (gh ~N~ l f ) .  We do this in Appendix B and find a 
rather remarkable result, namely that  

( g l ~ N ~ l . f )  _ 1 -}-h 2 2172 r~  s i n ( u / - - W N - - ~ ? ) s i n ( v i - - W N - ? ~ / )  
( g  I f )  1 - -  h 2 1 - -  h z ~ sin(ui --  WN § ~7) sin(vi - -  w N - -  9 ) )  

(105) 

Thus if we can calculate R~ for arbitrary h, ul ..... vn,  then we can calculate 
( g  I f )  and ~g[ ~N ~ i f ) -  Substituting the appropriate  values of  u~ .... , v~, 
we can then obtain the various matrix elements in (97) and hence the spon- 
taneous staggered polarization. 

A n  interesting check on our calculation is to evaluate the ratio (105) 
for  the homogeneous  lattice (w~ = - - -  wN = w) when h --~ 1 and I g )  ---> I f ) .  
Taking products  over i = 1,..., n of  both  sides of  (81), we obtain 

[ sin(u~ --  w + W)]N 
1-[ , - -  sin(u~ w - -  ~])l = 

h2~ (106) 
i=1.  

F r o m  the v analog of  (81) we get a similar equation, with ui replaced by 
v~ and h by 1. 

Taking the ratio of  this with (106) and then taking the Nth root, re- 
member ing  that  we wish to choose the branch so that  each u~--~ v~ when 
h --~ 1, and then substituting into (105), we get 

( f [  ~rN~ I f ) / ( J l f )  = ~im (1 + h ~ - -  2h~-Z'/N)/( l  - -  h ~) = ( N  - -  2 n ) / N  (107) 

This is correct, being simply the mean difference of  the number  of  up 
and down arrows in each row of  the lattice, i.e., the direct vertical polarization 
(Lieb's C~ parameter  y). 
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7. E V A L U A T I O N  OF R. A N D  Po FOR A SPECIAL 
I N H O M O G E N E O U S  LATTICE 

Unfor tunate ly ,  we have not  been able to obta in  tractable expressions for  
the function R ~ ( u l  , . . . ,  u ,  [ v l  , . . . ,  v~)  in general. However ,  in Appendix  C we 
show tha t  we can evaluate it exactly if 

uj  = - - i x  + �89 - -  n - -  1 ) In  (108a) 

v~ = - - i y  q -  �89 - -  n - - 1 ) / n ,  j =  1 . . . .  , n (108b) 

where x and y are arbi t rary  constants,  in general complex. Thus uz ,..., u ,  
are uni formly  distr ibuted along a line segment  of  length ~r parallel to the 
real axis, with average value - - i x .  (Similarly for  vz ,..., v , ,  y.) 

We find tha t  

R~ = (2i)~-~2(1 - -  tz)-n(1 - -  h2)(1 - -  t z ')  

n - - 1  

• 1-I [(t" . . . .  t~-m)(t . . . . . .  h 2 t " ) e  " (u -x )  
m = l  

- -  ( t  . . . .  t ~ ) ( h 2 t  . . . . .  tn-~)e ~ - u ) ]  (109) 

The p r o o f  of  this result tha t  is given in Appendix  C is valid only when n 
is a pr ime number .  F r o m  assumpt ion  (i) in Section 4 this is sufficient for  our  
purposes .  However ,  it seems likely tha t  (109) should be true for  any integer n 
(it is for  n =- 4). 

Given (108b), one can readily establish (e.g., by compar ing  zeros and 
growth  rates at  infinity the identi ty 

n 

I ]  sin(u - -  vj) ~ 2 a-~ cos[n(u ~- i y  - -  �89 (110) 
j = l  

for  all complex  numbers  u. Using (108a) and (85d), it then follows tha t  

3 : 2~-n2i-n2[sinh n ( x  - -  y ) ] n  (111) 

while f rom (34) and (85a) 

/z == i"(sinh ;~)~ (112) 

Substi tut ing these results into (97), using t = e -~, and rearranging the 
terms in (109), we get 

( g F f }  = ~(sinh 1) -2~ sinh(n~) I-I [~(sinh n)~) cosh n ( x  - -  y )  
m = l  

- -  2(1 @ h ~) (sinh m,~) sinh(n - -  m)A 

- -  (1 - -  h 2) sinh(n - -  2m))q (113) 
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where 

a = (1 - -  hZ)/sinh n ( x  - -  y )  (114) 

7.1. A Special Inhomogeneous Lattice 

Fortunately, there are values of wz ,..., WN , lying in the FR, for which 
the u5 (or vj) corresponding to the eigenvectors [0} and 11} do satisfy 
(108a) and (108b), for all values of h. Thus we can use the above results to 
calculate matrix elements and the spontaneous staggered polarization P0- 

Let 

N = 2n (115) 

(we expect C~) this subspace to contain the maximum eigenvalues), and 

wj ~- �89 - -  N - -  I ) / N  (116) 

Thus wl . . . . .  W N are spaced evenly along the line segment (--�89 �89 of the 
real axis. The conditions (35) can be satisfied (e.g., by choosing each w/  = 0) 
and the lattice parameters then lie in the FR. 

Consider the equations (81) for u~ ..... un and suppose a solution of the 
form (108a) exists. Substituting (108a) and (116) into (81) and using identities 
analogous to (110), the equations become 

cos N(ur  -5 r 1 - -  �89 

cos N(u~ - -  ~ - -  l rr)  
= _ h  a cos n(u j  + ix  + 2,1 --  �89 (117) 

cos n(u j  + i x  - -  27  - -  �89 

f o r j  = 1,..., n. Using (108a) once more, and also using (115) and (34), we 
obtain 

cosh N ( x  - -  �89 N ( x  + �89 - :  h 2 (118) 

Thus the equations (181) are satisfied, provided x is chosen to satisfy 
(118), i.e., 

x = XL =- (�89 + d(h)  (119) 

where L is any integer and 

d(h)  = (4n) -1 ln[(1 - -  h~tU)/(h z - -  tu)] (120) 

We choose the branch of the logarithm in (120) so as to be zero when h = 1. 
From (108a) we see that incrementing L by two simply relabels the 

uj and moves the end ones by rr. This merely multiplies the eigenvector (79) 
by :~ 1, so is not a new solution. I t  follows that there are just two solutions of  
(118) corresponding to distinct eigenvectors, namely x = x0 and x = x l .  
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For both solutions the u~- are then equally spaced along a line segment 
parallel to the real axis, those of one solution sitting in the middle of the 
spaces of the other. 

From (83), the eigenvalue Az is the ratio of two entire functions of w/ .  
The conditions (81) ensure that the denominator is a factor of the numerator, 
so Ax is an entire function of w/. (As it must be, since the eigenvectors are 
independent of We' and the elements of the transfer matrix are entire functions 
- -we  have made these points before in connection with the eight-vertex 
modelJ 7) 

Substituting (108a) and (116) into (83) and dividing the denominator 
into the numerator, using (119), we obtain 

A L , r =  (1--tZ)-N(j=~-IlCI,j) 
• {(--1)L(1 -- t u) [(1 -- h2tU)(l - -  h-2tN)] 1/z 

+ 2(--1)~t~r(h -t- h -1) cos(2nw/)} (121) 

for L = 0, 1 and I = 1,..., M. The branch of the square root in (121) is to 
be chosen to be positive when t u < h 2 < t -~v. 

In the completely ordered state t ~ 0. From (55) we see that the eigen- 
values -do. I and ./11.1 given by (119) and (121) are then indeed the maximum 
eigenvalues of the transfer matrix, and that _/lo.i (Al , t )  corresponds to an 
eigenvector which is symmetric (antisymmetric) with respect to reversing 
all arrows. 

From assumption (iii) (Section 4) we therefore expect that for all 
positive A (i.e., 0 < t < 1) the two maximum eigenvalues and their associated 
eigenvectors are given by (108a), (108b), and (119)-(121). 

Remember that vl ,..., v~ are also required to satisfy (81), with h set 
equal to one. From (108b) and the above it follows that y = Y0 or y~, where 

YL =- �89 L = O, 1 (122) 

7.2. Matr ix  Elements ( 0 [ 0 )  and ( 1 1 1 )  

Now let 10) and r l )  be the eigenvectors of the zero-field transfer 
matrix (with (h = 1), corresponding to the maximum eigenvalues. Substi- 
tuting the appropriate values of x and y into (113) and (114), it follows that 

( L ' I L )  = lim [r.h.s. of (113)]~=~L.~=~, L, (123) 
h ~ l  

for L, L' = O o r  1. 
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With these substitutions we see from (114), (115), (I19), and (122) that  

l i m ~  = 0 if L # L '  (124a) 
1~-->1 

if L =- t '  (124b) = lim (1 --  h2)/[nd(h)] = 4 tanh(n))  

F rom (113) and (124a) it is apparent  that  

<oi 1> = (1 I o> = o (125) 

as we expect. Also, substituting (124b) into (113), letting h - +  1 and x - + y ,  
and rearranging the remaining terms inside the product ,  we obtain 

( 0 1 0 )  = <1 i 1> = 4'~(sinh A) -2~ tanh(nh) sinh(nA) 

n--1 
X 1-I [(cosh mA) cosh(n --  m)A - -  sech n)t] (126) 

m=l 

7.3. Ma t r i x  Elements 4[0 I aN~l I )  and 411 ] a J [ O )  

We now go back to Eq. (105) and use the identity (110), together  with 
its analog when the uj replace the vj,  and (116). Multiplying by 1 - - h  2, 
setting x ~ xl and y = Y0, and taking the limit h -+ l, we obtain 

lim [(1 --  h2)<0 ] aNZ I 1}/<0 ] 1>] 

= lim [1 -t- h 2 - -  2h 2 cosZ(n~ + ~Tr) sec2(mi --  I~)]  

= 4ie ~~ tanh(n~) (127) 

where 0 is real and is given by 

0 = 2 artan(e -ha) - -  �89 (128) 

The limiting value of  <0 ] 1>/(1 - -  h 2) is readily obtained f rom (113), 
(114), and (124a), giving 

(01 aNaL 1> = 4"(- -1)  ~-1 ei~ A) -2~ tanh(nh) sinh(n;~) 

n--I 
• I-I (sinh mA) sinh(n --  m)h (129) 

m=l 

Interchanging 10> and 11> is equivalent to negating ~, )t, and 0 in 
(127) and to complex conjugation in (113). Thus 

<1 I (YNZ l O> = <OI (YNZ i 1>* ( t 3 0 )  
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Substituting these results (127), (130), and (131) into (76) and taking the 
positive square root, we obtain 

n--1 
P0 ---- r I  [(coth m))  coth(n - -  m))  

m=l 

--  (sech n;~)(cosech m))  cosech(n - -  m)A] -1 (131) 

We emphasize that  this result is exact for finite N, n (at least for n a 
prime number)  satisfying (115), provided w 1 .... , wN are given by (116). 

In the limit o f  n large the term containing sech n)t in (131) becomes 
negligible, giving 

tt--1 
P0 = I)_ m 1-[ [(tanh m)) tanh  (n - -  re)Z] 

iv[n-1 I//7 /~)2 = lira . ~  tanh = I-I tanh 2 mA (132) t t ~  \m=l 

This is our result, which we quoted and discussed in Section I. 

A P P E N D I X  A 

Let 

I ~ r.h.s, o f  (90), I '  ~ r.h.s, o f  (9 l) (A. 1) 

We prove here that  

I ~ I '  (A.2) 

for  all complex numbers  7, ul .... , u~, vl ,..., v,~, and w~ ..... WN �9 We do no t  

use the relations (81), nor  their analog for  v~ .... , v~. 
We first establish four  properties. 

(i) I and I '  are p-functions o f  degree N - -  1 of  each of  the variables 
uz .... , u , .  For  I this follows directly f rom (89). For  I '  we first note that  the 
summand  in (91) is unaffected by applying the same permutat ion to both  
u~ .... , u ,  and vz ,..., vn �9 The V summation,  with weight ev ,  can therefore be 
replaced by a U summation,  with weight eu .  Thus the sum in (91) is an 
antisymmetric periodic function o f  u, .... , u~. It  must  therefore contain 
y as a factor. 

Further, the summations 52~ ensure that  the apparent  poles in (91) at 
uj = vj are spurious, having residue zero. Thus I '  is an entire function 
of  u~ ,..., u , .  Considering the periodicity properties and the growth rates at 
uj = jzioo, it follows that  I '  is a p-funct ion o f  degree N - -  1 o f  the variable 
us, f o r j  = 1 ..... n. 
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(ii) I and I '  are symmetric functions of  ul ,..., un �9 This follows f rom 
(89) and the above remarks. 

(iii) I and I '  are symmetric functions of  w l  , . . . ,  W N .  For  I '  this is 
obvious f rom (91) and (85a)-(85g). To prove it for  I, consider the effect of  
interchanging ws and w j+l in (90). We distinguish three types of  terms oc- 
curring in the X summation:  

(a) N o  down arrow in columns J or J -1- 1: N o  xj equals either J or 
J -5 1. Such terms in (90) are by construct ion symmetric functions o f  Ws, 

W J +  1 �9 

(b) One down arrow in columns J and J q- 1: One xj equals J, or 
J + 1. Considering both  possibilities, removing all factors in (90) that  are 
by construct ion symmetric functions o f  ws and wj+~, we are left with a term 

sin(vs - -  w~+l + *?) sin(u; --  w j+l - -  ~) + sin(vj - -  ws - -  *?) sin(us - -  ws + *?) 

= cos(uj --  v~) cos 2*? - -  cos(uj + v s - -  ws - -  w j+l)  cos(ws - -  Ws+l) (A.3) 

which is symmetric. 

(c) Two down arrows in columns J and J + 1. There exists j such that  
xj = J and x;+, = J + 1. L o o k  simply at the corresponding elements of  
I f ) ,  as given by (79). Including the effect of  interchanging uj and u~-+l, we 
find that  the only possibly asymmetric factor  of  the summand  in (79) is 

sin(uj - -  us+l + 2*?) sin(us - -  Ws+l - -  *?) sin(us+l - -  ws + *?) 

- -  sin(u~.+l - -  uj + 2*?) sin(us+l - -  Ws+~ - -  *?) sin(uj - -  wj + *?) 

= sin(uj+l - -  us)[cos(us + us+l - -  Ws - -  w j+l) cos(2*?) 

- -  cos(uj+l - -  uj) cos(wj - -  Ws+0] (A.4) 

which is symmetric. Similarly, so are the corresponding elements of  (g  1, 
and hence this contr ibut ion to (g  I f ) -  
T h u s / ,  defined as the r.h.s, o f  (90), is a symmetric funct ion of  Ws and Ws+, 

for J = 1 ..... N. I t  is therefore a symmetric funct ion of  w~ .... , WN �9 

(iv) I = I '  = 0 i f u i + * ?  = U j - - * ?  ~ - W s , i = / : j .  

Set u~ = w~ --  ~7 in (79) and (80). Then 5v(ul, x) vanishes unless x = 1. 
Thus f ( x ~  . . . . .  x , , )  vanishes unless xt = 1 and only permutat ions U that  
leave u~ unchanged give a nonzero contr ibut ion to (79). Multiplying by ~N 
removes the poles in (80), so ~Nf, and he nc e / ,  contains a factor 

~z qz 

YI sin(ua - us + 2,?) = I-I sin(w1 - us -+- *?) (A.5) 
S = 2  j = 2  
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Also, set ul = w~--~/  in (91). Then Bu(u0 = 0, So the term in ~2z 
corresponding to interchanging ut and vt is not  allowed. All remaining terms 
contain either a factor  AN(bl~), or, if uj and vj are interchanged, a factor  
sin(uz - -  uj § 2~7). In  either case they contain the factors sin(w~ - -  u~- -r- ~?) 
f o r j  = 2 ..... n. T h u s / a n d  I '  bo th  contain (A.5) as a factor. 

Hence I and I '  vanish if u~ § 8 ~- uj - -  ~7 ---- wl ( j  = 2,..., n). F r o m  the 
symmetry properties (ii) and (iii) the general proper ty  (iv) follows. 

Proof of Identity: Stage | 

Define, for  m = 0, 1,..., n, 

Km = 1 - - 1 '  with u ~ = w i - - ~ /  for i =  1, . . . ,m (A.6) 

Thus K0 is simply 1 - -  I '  for  arbitrary ul ,..., u~. We assert that  

K 0 ~ 0  if K ~ 0  (A.7) 

The p roo f  is obtained recursively by taking m = n - -  1, n - -  2,..., 1, 0 
in the following argument.  

Suppose that  for some value of  m 

K~+I ~ 0 (A.8) 

F r o m  proper ty  (i) and (A.6), K,~ is a p-funct ion of  degree N --  1 o f  the 
variable u,~+l �9 F rom proper ty  (iv) and (A.6) it vanishes if 

u~+l = w i + ~ / ,  i ~  1 .... , m  (A.9) 

F rom (A.6) and (A.8), Km also vanishes if 

u~+z = w~+z --  ~ (A.10) 

However,  f rom the symmetry  proper ty  (iii) and (A.6), K,,, is a symmetric 
function of  w~+~ .. . .  , W N .  Thus (A.10) can be generalized to state that  K~ 
vanishes if 

u ~ + l  = w j  - -  rl, J = m -[- 1 . . . . .  N (A. 11) 

We assume that  w~ ~ '7,. . . ,  WN • ~7 are distinct complex numbers.  
Then f rom (A.9) and (A.11) K,~ as a funct ion o f  u~+~ has N distinct zeros. 
F r o m  Theorem 1 it therefore vanishes identically. 

Thus if K~ ~ 0, so are Kn_l ,  K~_2 .... , K1, Ko. This proves (A.7). 
By continuity the result is also true even if w l  +_ ~ , . . . ,  WN 4 ~7 are not  

all distinct. 
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Stage 2 

We now show that  K .  ~ 0. F r o m  (A.7) our  desired identity I ~ I '  then 
follows. 

To obtain K . ,  set 

u i  = w i  - -  7 ,  i = 1 , . . . ,  n (A.12) 

in (90) and (91). Then the summand  in (90) vanishes unless 

xj = j, j = 1,..., n (A.13) 

and U is the identity permutat ion.  Also, since B N ( U ~ )  = 0 for  i = 1,..., n, all 
terms in (91) arising f rom interchanging any u~, ve vanish. Hence the sum- 
mations ~2, ,-.., ~ ,  can be ignored in (91). 

Using these facts, we find f rom (85a)-(85g), (90), (91), and (A.6) tha t  

K ,  = (--1)"(/xyy')  -~ 1-[ sin(wj --  u.'~ - -  2~7) 
j = l  y = l  

• I-[ sin(vj - -  w~ + ~/) L~ (A.14) 

where 
~ F 

v L l~i<j~n 

• sin(vj - -  wi --  ~7) sin(vi --  w~ + ~7) 

- -  1-[ 1-I sin(wi - -  vj ~- ~7) sin(vi --  w~ 6- */) (A.15) 
i=1  j = l ~ i  

Thus L~ is a funct ion o f  vl ,..., v~ and wl .... , w , .  We now prove in- 
ductively that  L~, L2 .... , L~ are identically zero. We need four  properties. 

(a) Ln is a p-funct ion of  degree 2(n --  1) o f  wl ,..., w , .  This follows 
f rom the anatyticity and periodicity of  (A. 15), together with the growth rates 
as wj --+ ~ iov .  

(b) L .  is an antisymmetric function of  va ..... vn and of  wl .... , w . .  
The first statement is obvious f rom (A.15). The second can be verified 
indirectly f rom properties (ii) and (iii) of  I - -  I ' ,  together with (A.12) and 
(85b). 

(c) I f  w,  = v~ + 7, then 

L .  = Ln-1 I-I [sin(wi - -  vn - -  7) sin(vr~ - -  vi 6- 2~)) 
/=1 

• sin(v. - -  w i  - -  7 )  sin(vi --  v.)] (A. 16) 
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This follows f rom (A. 15) by noting that  only permutat ions V that  leave 
v,, unchanged give a nonzero contribution, and then removing all factors 
containing v, or w,~. 

The p roo f  is now simple. Suppose that  for  some m (m = 1 ..... n) L~,_z 
is identically zero. Regard L,,, as a function of  w .... F rom (b) it vanishes if 

w,,~ = wl ,..., w,~ 1 (A. 17) 

F rom (c) and our  assumption that  L~,,_z ~ 0, L~,, also vanishes if 

wm =- v,,~ -?- ,7 (A.18) 

However,  f rom the first of  the properties (b), it must  then vanish if 

w,,, = v~ + ~/, j = 1,..., m (A. 19) 

'Thus L~ has 2m --  1 zeros, in general distinct. F r o m  proper ty  (a) and 
Theerem 1 it must  therefore vanish identically. 

Finally, f rom (A. 15) 

L~ = 1 --  1 = 0  (A.20) 

Thus L~, L2 ..... L~ are identically zero. Hence f rom (A.14) K~ is zero, and 
f rom (A.7) K0 is zero, i.e., 

I ~ I '  (A.21) 

This completes the proof.  

A P P E N D I X  B 

Here we derive (105) f rom (98) and (99). 
Define S~(ul ..... u~ ] vl ..... v,) = r.h.s, o f  (98) with an extra term in the 

summand,  namely 

IV[ [sin(u~ - -  WN --  ~/) sin(vl --  WN + ~/)] 
i ~ K  

• 171 [sin(u,: - -  wu + ~7) s in(v/ - -  WN --  7)] (B. l) 
iTaK 

Then f rom (97)-(99) 
~z 

zN I f ) / < g } f >  - R~IS, / I - I  [sin(ui --  wN -]- ~/) sin(vi - -  WN --  ~/)] (B.2) 
/ 

i = l  

Using reasoning similar to that  used to derive (100), but  taking account  
o f  the extra factor  (B.1), we find that  

Sn(u l  ,..., u ,  I v~ ,..., v , )  

symmetric function of  u~ .... , u ,  and of  v~ ..... v~, being a 

p-function of  degree n in each of  ut ,..., u ,  and v 1 ,..., v~ (B.3) 
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Further ,  we can derive the analog of  (102) and (103), namely  

& ( u l  . . . .  , u ~ - l ,  x I V l , . . . ,  v , _ l  , x )  

= sin(x - -  WN - -  7]) sin(x - -  wN + 7]) 

• t]2I 1 [ s i n ( u i -  x + 27]) sin(x - -  vi + 27])] 
I. i=1  

n--1 1 
- -  h 2 IF[ [sin(x - ui  + 27]) s i n ( v / -  x + 27) ] 

i = 1  

• S ,~- I (u l  . . . . .  us - i [  vl ,..., v~-l) (B.4) 

Sl(u I v) = sin(u - -  WN § 7]) sin(v - -  w N - -  7]) 

- -  h z sin(u - -  wu - -  7]) sin(v - -  WN + 7]) (B.5) 

Unfor tunate ly ,  Eqs. (B.3)-(B.5) do not  define S ,  uniquely, it being a 
p- funct ion  of  degree n, ra ther  than  n - -  1 (as R~ is). We need one more  
piece of  informat ion.  This can be obtained by not ing f rom (B.1) tha t  if 

~l.  = W N @ 97 (B.6) 

then the s u m m a n d  vanishes unless kr < n. F r o m  (98) and (B.1) the s u m m a n d  
therefore contains a factor  

n--1 

I ]  sin(uj - -  us + 27]) I-I sin(us - -  WN -+- 7]) = sin(2~/) l-I sin(us - wiv + 7]) 
j=K jv~K 5=1 

(B.7) 
Using symmetry ,  it follows tha t  

S~ = 0  if ui - -  7] = u s + 7 ]  = WN (i @ j )  (B.8) 

Equat ions  (B.3)-(B.5) and (B.8) determine S ,  uniquely. To  see this, 
suppose S,_1 is known and let u~_l = WN - -  7]. Then f rom (B.4) and (B.8) 
we can evaluate S ,  at the n + 1 points  (in general distinct) u~ = v 1 ,..., v , ,  
WN -~ 7]. Since S ,  is a p-funct ion of  degree n of  u , ,  this determines S,~ for  
all u , ,  provided tha t  u._z = WN - -  7]. 

By symmetry ,  this also determines S,~ for  u~ = WN - -  7] and all Un_l �9 
We  can also evaluate S ,  f rom (B.3) and  (B.4) for  us = vl ..... v , ,  and hence 
for  n -5 1 values of  Un (for all un_O.  This determines S ,  for  a l l  values of  

U 1 , . . . ,  U n . 

A rather  startling result follows, namely  tha t  

lI~I [sin(ui - -  wy § 7]) s i n (v / - -  wN - -  7])] Sn 
( i = I  

- -  h 2 I ]  [sin(ui - -  wN --  7]) sin(vi - -  wN + 7])] R,~/(1 - -  h ~) (B.9) 
/ = 1  
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From (100), (102), and (103) this expression (B.9) for Sn  satisfies (B.3)- 
(B.5) and (B.8). It is therefore correct. 

Substituting (B.9) into (B.2) and the result into (95), we obtain Eq. (105). 

A P P E N D I X  C 

Here we show that if/,/1 . . . .  , u,~ and vl ..... v, are given by (108a) and 
(108b), then R~ is given by (109). 

Let 

F n 7 
R~ = (2i) ~(~-1' exp | i ( n  - -  1) 2 (u~ + v~- + 2,)  / R~ (c.1) 

k j= l  J 

Then from (100) and the definition (88) of a p-function, R~ is a polynomial 
of degree n -- 1 in each of the variables 

blj = e2iUj,  f)j = e2ivy,  .]" = 1,..., n (C.2) 

It is a symmetric function of u~ ... .  , Un,  and hence a symmetric multi- 
nomial in ~a .... , g~ (and similarly in ~ ,..., G). Thus it can be written as a 
(simpler) multinomial in the symmetric variables 

U~ = (--1) j Z ff~l "'" u~j, V~ = (--1) j Z vk~ "" Gs (C.3) 

wherej  = 1,..., n and the summations are over all integers k I . . . .  , kj such that 

1 ~<k~<k2 < ' "  < k i l n  (C.4) 

Defining 

G - - G = 1  

it is an elementary algebraic identity that 

(c.5) 

M (1 - -  ~ j z )  ~ UmZ "~ (C.6) 
.4=1 m=O 

for all complex numbers z. (Similarly for ~j and Vm .) 
Each U /o r  Vj) is a linear function of any G~ (or G). It follows that there 

exist a unique set of coefficients c,~ such that 

K,~ = ~ c , ( h  . . . . .  j ~ _ t  [ka  . . . . .  k , - O U h  "'" U~,_IVI~I "'" G~,_I (C.7) 

Further, from (85a)-(85g) and (98) Rn is unchanged by adding the 
same constant to each of ul ..... u,~ and vl ..... v~. This implies that the 
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summat ion  in (C.7) is restricted to nonnegat ive integers j~ ,..., k,_z (each not  
greater  than  n) such tha t  

j~ %- ".. %- j~_~ %- k~ + . ' .  %- k , _ ~  = n(n  - -  1) (C.8) 

We now r e g a r d / ~  as a funct ion of  the U~ and V~ of  the fo rm (C.7), 
and write it as 

R , (Uj  I V~) =--/~,(U o ,..., U , ]  Vo ,..., V,) (C.9) 

We set 

z ~ e2iL t = e 2i~ (C.10) 

[From (34) this t is the same as tha t  in (9).] Defining Uj and Vj as above,  but  
with n replaced by n - -  1, expanding  the sines in (102) in terms of  the dif- 
ference of  imaginary  exponentials,  then using (C.I)  and (C.6), the recurrence 
relation (102) becomes the identity 

R n ( U j  - -  z U j - 1  I Vj  - -  z V j _ l )  

n--1 n--1 
(--1) n-1 2 Z t2(n-l+t-m)z2n-2-~-m(U~Vm - -  h2VzUm)Rn-x (Uj  [ Vj) 

~=0 ,~=0 (C.11) 

for  all complex numbers  z, Uo ..... U,_~ and V0 ,..., V ,_ I .  Here  U_I ,  U,,~, 
V_I ,  and Vn on the 1.h.s. are to be interpreted as zero. 

Also, (103) becomes 

/~1 = 1 - -  h a (C.12) 

Substituting (C.7) into (C.11) and equat ing coefficients, we obtain  
equat ions for  the coefficients c ,  tha t  determine them uniquely if the c~_~ 
are known.  Fo r  instance, it is quite easy to verify tha t  

R~ = (1 - -  h~)[(1 + t~)(1 - -  t~h~)goV~ 

- -  t~(1 - -  h2)UIV~ %- (1%- t2)( t  ~ - -  hz)U2Vo] (C.13) 

Despite  these simplications,  we have not  been able to obta in  useful 
general  expressions for  Rn .  However ,  it turns out  tha t  we can handle the 
case when 

U1 - -  - -  Un_l = V1 = " = V,_~ = 0 (C.14) 

as we shall now show. This corresponds to u~ ..... v~ being of  the fo rm (108a) 
and  (108b), with 

Un = ( - -1)  n e z'~, V, - :  ( - -1 )  ~ e 2~u (C.15) 
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In the recurrence identity (C. 1 l) set 

U ~ = z  ~, j ~ - 0 , 1  ..... n - - 1  

V~ = z  j, j = 0 ,  1 ..... m - - 1  (C.16) 

= -z~-~ /3 ,  j = in,  m + 1 ..... n - 1 

where m is some integer between 1 and n - -  1, and/3 is an arbitrary complex 
number.  Then the 1.h.s. o f  (88) becomes 

_~(1 ,  0,.. . ,  o, - z ~ : ~  1, o .. . . .  o, - z  . . . . .  /3 - z  ~, 0,.. . ,  0 , /3 )  ( c . 1 7 )  

i.e., all arguments of  the function /~s are zero except Uo, U~, Vo, V,~, 
and V~. 

N o w  imagine evaluating (C.17) f rom (C.7), and consider possible terms 
involving only U0, Us ,  Vo, V~,  Vs.  I f  V,~ occurs r times, then f rom (C.8) 
we must  have 

rm = n • integer (C.18) 

where r = 0, 1,..., n - -  1. I f  n is a prime number,  the only solution o f  this 
Diophant ine  equation is r = 0. Thus Vm does not  occur, i.e., R~ is independent 
o f  V,~. 

It  follows that  we can replace the argument  - - z m - ~ / 3 -  z ~ in (C.17) 
by zero. Equat ion (C.11) then becomes, using (C.16) on the r.h.s., 

_R~(1, 0 ..... O, ~ [ 1, 0,..., O,/3) 

= ( - -  1 ) n z ~ - 2 A ~ [ A ~ ( t  2s-2"~ _ h2)c~ 

-~ A . . . .  (1 - -  h2/'2m)/3] .Rn_I(Uj i Vj) ( C . 1 9 )  

where we have set 

= - -z"  (C.20) 

A,~ = 1 -k t 2 -k t 4 -5 "'" -k t 2~-2 = (1 - -  t2~)/(1 - -  t 2) (C.21) 

S ince /~_a  is an entire function, the bracketted expression preceding it 
on the r.h.s, o f  (C.19) must  be a factor  o f  the 1.h.s. Taking m = 1,..., n - -  l, 
we obtain n - -  1 such factors, each linear in ~ (and/3). However,  f rom (C.7) 
the 1.h.s. of  (C.19) is a polynomial  o f  degree n - -  1 in ~ (and/3). Thus 

_~.(1, o ..... o , ~ 1 1 ,  o ..... 0 , /3)  

n--1 
C~ I-I [A,.(t 2~-2'~ - -  hZ) c~ q- A . . . .  (l - -  h2t2'~)/3] (C.22) 

m=l  

where C,~ is a constant,  independent of  ~ and/3. 
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To ob ta in  this constant ,  note  f rom (C.7) and  (C.8) tha t  if  the a rguments  
V1 ,..., V, of  _~, are all zero, then  R ,  mus t  be of  the form 

R ,  = a , ( U ,  Vo) "-1 (C.23) 

where d ,  is some constant .  
N o w  set m = 1 and/3  = 0 in (C.16). Then  V1 - -  - -  V,_I = 0 and we 

can use (C.23) for  bo th  _~, and  R ,  1 in (C.19). Us ing  (C.20), we ob ta in  

& = A . ( t  2"-z - -  h2)d._~ (C.24) 

Solving this recursively, using 6/1 = 1 - -  h z, and  compar ing  the result  with 

(C.22) for /3 ~- 0 we see tha t  

c n  = (1 - h~)A. ( r  

N o t i n g  tha t  c~ ~ U,  a n d / 3  = V~ and using (C.1), (C.15), and  (C.22), 
we ob ta in  the result  quoted  in Eq. (109). 
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